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A Rigorous Control of Logarithmic Corrections
in Four-Dimensional ¢* Spin Systems.

IL. Critical Behavior of Susceptibility and
Correlation Length
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Continuing the analysis started in Part T of this work, we investigate critical
phenomena in weakly coupled ¢* spin systems in four dimensions. Concerning
the critical behavior of the susceptibility and the correlation length (in the high-
temperature phase), the existence of logarithmic corrections to their mean field
type behavior is rigorously shown (ie., we prove y(r)~:¢='[In#|!” (1)~
1=Y2 [In ¢ 5).
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rigorous renormalization group.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we continue the program started in the Part I of this work®)
(hereafter referred to asI), and extract the so-called /logarithmic
corrections® to the mean field predictions in the critical behavior of the
susceptibility and correlation length of the weakly coupled ¢ system.

The Gibbs measure of the ¢* spin system on a d-dimensional hyper-
cubic lattice 4, = Z“ studied in this paper is defined as

du(P)=2""exp[ — A (@)1 [] do. (L.1)
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where xe A, Z% ¢, eR, ®={¢p.}.,

1 o Ao
Jf‘iozz Z (<p %)“rZ[u(erZ;q)] (1.2)

and Z is determined by the normalization condition |du(®)=1. (By
definition, u, here differs from that of Part I by 4,G,,/2 = Ao(Gg)oo/2.) F
any function F of @, its thermal expectation value is defined by

<F>Efpdu(<p) (1.3)

We take A, as a d-dimensional torus of side L". (We will mainly consider
the system in four dimensions, ie., d=4.)

As in I, we fix initial 4, to a sufficiently small (but positive) value, and
vary only p,. We are interested in the behavior of (the infinite-volume limit
of) the system, when u, approaches its critical value p. [for the definition
of u,., see (2.10)]. Our main physical result is the following:

Theorem 1.1. Consider the infinite-volume limit (4, —Z*) of
the four-dimensional ¢* system (1.1), and vary pu,, fixing 0<i,
(=ny'<ng'<1) Then:

(0) There exists a critical value u.(4,).

We write t = pg—

(i} For t>0, the susceptibility y

xeZ?
the correlation length &
&) '=— lim w&";ﬂwﬂ (15)
x| — © 1

and the renormalized coupling g .., (here d=4)

gren(t)zx%‘} (1.6)

Uy = Z (<¢'O(px(py(pz>_<(P0q)x><(p_v(pz>

X, y,ze 24

= L@@, 2P0, — PP, )P ?,)) (1.6)

exist.
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(ii) For 0 < sufficiently small, they satisfy the bounds:

Ry{(L,Ny,ng) 2t Int]"P<y(t) <Rt |In t] 2 (1.7)
Ri(L, Ny, ny) "1tV |In 1| Yo < E(1) <Rt~V |In g V8 (1.8)
Oggren(l)gcg([ﬂ NO)(nO+|ln [|)'1/2 (19)

Here L > 513, Ny =8, ny~ Ay ! are the same as in I,
R(L, No, ng) = C'(L, No)(ng) <" (1.10)
and C,, C', and C” are finite, positive constants depending only on L and
N0¢

Remarks. 1. The theorem establishes the existence of the
logarithmic corrections to the mean-field-like behavior in our weakly
coupled @3 model.

2. For some general properties of the critical point (especially con-
cerning its uniqueness), see Ref. 3.

) 3. For the implications of the logarithmic corrections (for all 1> 0)
to the triviality problem of ¢%, see Ref. 4.

4. The ny (~ A5 !) dependence of the coefficient R} is of some interest.
The fact that it diverges when 1, — 0 (n,— o0) is quite reasonable from
physical considerations, because in 1, =0 (=Gaussian!!) theory, there are,
of course, no logarithmic corrections.

5. The bound on g,., can be improved*:
0< gren(l‘)< Cg(L7 NO> 5)(n0+ lln t')kl*—(s

(1.11)
0<o<l [Cy(L, Ny;0)— 0 as 6 0]

Note that, contrary to R, C,(L, N,; d) does not depend on #,.

By similar (but much simpler) analysis, we can prove:

Theorem 1.1°. Consider the same situation as in Theorem 1.1, but
now for the ¢* system in d dimensions (d> 4). Then we have:

(0), (i) The same as Theorem 1.1 (replace Z* by Z7).

4 We can further improve‘!>);
Gren(t) R (ng+ [In 1)) =1+ O[ (g + |In 1) =]

(both upper and lower bounds!). We are grateful to J. Chayes, L. Chayes, M. Aizenman,
and A. Sokal for suggesting that improved bounds be obtained on g,,,.
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(i1) For O <t sufficiently small, y(¢) and &(¢) satisfy the bounds:

const- ¢t~ < y(t) <const’ - ¢! (1.12)
const- ¢t~ 2 &(t) < const’ - 112 (1.13)

We will prove Theorem 1.1 in Sections 2-4, following faithfully the
original idea of Wilson,®’ but with complete mathematical rigor. First, in
Section 2, we prove the theorem, making use of some bounds on the expec-
tations <:*-> 4., which are defined in terms of the nth effective
Hamiltonian 3" [the choice of » is defined in (2.2)]. Then, in Sections
3-5, we prove these bounds on (- > ,n.

As for the continuum limit, we have the following result.

Proposition 1.2. The continuum limit of the theory

J
%%OEZ! Z\ﬁ]((px—‘q)x)z
Ko 2 %0 s >0 14
under the conditions
fo Z p(4o, 2) and 0< Ao 2 < () ! (1.15)

is always Gaussian or badly normalized (i.e., all the correlation functions
diverge, or all the correlation functions are zero!) theory.

Remark. The above proposition tells us that under the condition
(1.15) the continuum limit is Gaussian (or meaningless), no matter what
wave function renormalization we choose.

This proposition is proved by the bound on the renormalized coupling
(Theorem 1.1) and/or by direct analysis of correlation functions. Details will
be presented elsewhere (after the completion of the analysis of the low-tem-
perature phase).

2. DERIVATION OF THE LOGARITHMIC CORRECTIONS

Before describing the detailed proofs, let us fix some notations. Note
that we have to consider both the infinite-volume limit A, — Z“ and the
limit po— p,. + 0. Therefore, the definition of u, needs somewhat careful
treatment. In the following, we will fix the initial value 4, and denote it
as A.
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Definitions 2.1 (cf. I, Corollary 2.4). Let the original lattice 4, be
a four-dimensional torus of side L", with N sufficiently large. Define
uAy) = pn(4; Ag) = critical value on A, as in 1, Theorem 2.1. (Of course,
we need to take into account the difference between definitions of u, in
Part I and in Part I1.) Now denote t=u— u (4,) >0, and let

M(L, Ny)= o 2L exp(55 + 8aL™) (2.1)

Define n,>0 as the smallest integer such that f, ,,, > M. (For the
definition of #,, see I, Theorem 2.2.) In the following, we denote

n=n,+n, (2.2)
and also abbreviate ¥ = %), etc.
Remark. WNote that the above M is still much smaller than our 7,,
fig ~exp(al™* ") (2.3)
We will treat several kinds of expectations, listed in the following.
Definitions 2.2.

[d® {exp[ - #°(®)]}(--)
[ d® exp[ — #°(P)]

<”'>0,/l.;1E (24)
with #°= A of (1.2), with yo =y and 4,=A.

{**>nan is the expectation obtained by applying n BSTs to
(Do 1€, for a function F of &7,

. e 2 _Jdo" {exp[ — A" (@) 1}( )
<F(¢ )>n,A,p“_ <F(Zn ZC (p)>0_/1,y: s‘d n eXp[~3’f"(¢>")]

(2.4")

We consider the torus A (considered as a set of sites and bonds) as a union
of a hypercube and its boundary (a set of bonds that make the hypercube

into a torus) dA. As for the infinite-volume limit of {--->, , ,

<...>0er4# = A}iinza 'aE >'(§‘/1/,u

Y :J-d¢{exp[k(}f(/)i(/free)(dj)]}(...) (2.5)
0,4 0= j dd exp[ ‘%g(tfree)(cb)]
and
CF(P")) g, = CF(zy 2C"D) Yo 2, (2.5

where #°%f*) is a Hamiltonian with free boundary condition, obtained
from 9 (on A) by omitting the term ¥, ,,_, ¢, ¢,, where {xy) is con-
tained in dA.
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2.1. Bounds on Finite-Volume Expectations

For the expectations {---), ,, defined by the above #% [with n of
Eq. (2.2)], we can prove the following bounds (uniform in |A,).

Proposition 2.3. For 0<r<(n,) 2,

COGOLD g,y + ¢+ S const(L, No) exp(— 50 |x]) (2.6)
(BL*M) ' <y, < L¥ot? (2.7)

where
Xn= ZA COBO™ D oot 1 2.7

and

0< —ity, SELM 4 (ng 1)~ 172 (2.8)

where
iy, = ZA Qs 00 @1 01 (2.8")

Also abbreviating 1 =(1,0,0,0), 2=(2,0,0,0), we have

(S00LM)~* exp[ — (2L2M)"?] < P08 ntomians (g
OGP n o et o) +1

holds for |In ¢| = const(L, Ny, M), sufficiently large.

This proposition is proven in Sections 3-5.

2.2. Bounds on Infinite-Volume Expectations

Note that, for the following two reasons, the two expectations
o D mtpiagy +¢ and Dy g4, o may be different: (i) -+ ), 4.4+ 2nd
its infinite-volume limit {-*->, 54, ., generally do not coincide. (ii) u.(4,)
may be different from g, (see below).

Concerning the A~ Z* limit of u(A,), we have (I, Theorem 2.5)

Ag—Z

That is, the existence domain of pu.(4,) shrinks to a unique point of R as
Al
For the A, — Z* limit of (- -- > n o, + > W€ have the following lemma.
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Lemma 2.4. For fixed >0, n, and for fixed x, there exists N()
such that for |4]=L*", N> N,

PP D0 pp 1 ScOnst(r) e (2.11)

with m(t) >0, const(t) < o0. Moreover, for fixed 1> 0 and xe Z*,
Jim <Po@D 0440 = (PoP D024 o (2.12a)
Jim K Po@ D mtpe 1= PPz ik (2.12b)
Proof. Because p(A)— u, as A— Z* we can take N(¢) sufficiently

large so that for N=N, p A)+3it<u . <p A)+3r Then, by
Proposition 2.3,

{OFOLD e SCOMSL- €~ DI
with n= |ln ¢[. This in turn implies
PP D04+ S CODSE - g /DL (2.13)

Now the difference between {@o¢, >, 4, ., and <</Jo§0x>‘,{/1/,#(,+, is

{<(po(px>n,A,ur+ t <(P0(px>£;/1f,”‘,+ 1[

1 0
‘[0 do E; <g00(px>n,A,‘u(»+ !

J do. Z <900(an (Py (pz>0rt1,A,,u(.+1 (2143)

0 lv—zl=1,(pz>eda

Here {--->* is the expectation defined by the Hamiltonian #%*, where
#°* is defined by adding

oA
- E Z (py(Pz

ly—z|=1,{y,z)edéd

to #%/. By the Lebowitz!” and Griffiths I1*® inequalities,

O< Z <(p0¢x;q’y(pz>i;,A,uc+t

ly—zl=1<pz>ed

<22 <€00(Px>f;<(py(pz>z

<2Y L0 0,40, 0.,

< const'(¢) exp[ —3m(t) min{dist(x, 04), dist(y, 64)}] (2.14b)
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On the other hand, the difference between {@o9.>/ ./, ., and
{PoP V0,24, 4+« 8OES 1O Zero, because the former converges to the latter by
the monotonicity. This, together with the estimate (2.14b), leads us to the
conclusion (2.12a). Equation (2.12b) immediately follows from the
definition of {--->,. 1

Combining (2.10) and (2.12), we can finally obtain:
Proposition 2.5. Fix ¢>0. Then, for fixed xe Z* (jx| < )

hm <(PO(P Dopiny+1=PoP D0z v« (2.15a)

and for fixed m < oo,
11in124 <(P >mA;4‘(A <(P QO >m Z4‘u£+f (215b)

Proof of Proposition 2.5. As was noted at the beginning of this sec-
tion, the expectation {---),, may differ from {--->, .« for two reasons.
We express them as

K Po@ D0 pitr+ = PP D024+l
~= ‘<€00(Px>0./1,#1.(/1}+r_ <§00(/7,\->0‘/1,;¢(.+ I1
+ l<(P0(px>0,A,y(»+z" <€00§0\«>o,z4,u[+fi (2.16)

We use the Lebowitz inequality'” to bound the first term:

K Po@y >0A;1L{4 — L Qo >oz4p(+[‘

puAAY+t
d xs T % 2,\
J # <q00(p 2 )Z (p'l/o.,/l_;t

pett

‘J%.(A)Jrr

<

\
dH Z <(p0 (Py >0.A,;A<(Px q)y >O,A,u

pod 1

Now for sufficiently large A, u(A)+3it<u<<p(A)+3;, and by
Proposition 2.3,

Z 0?04, PPy 0.4, <cONSL"(1)

Thus, the first term of (2.16) is bounded by
|t — u(A)] - const”(¢) (2.17)

and can be made arbitrarily small (for fixed ¢, x) by taking A sufficiently
large.
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As for the second term of (2.16), we can directly use Lemma 2.4, and
conclude that this can also be made arbitrarily small by taking A large. |J

Corollary 2.6. Bounds on finite-volume expectations (2.6}-(2.9)
hold also for those on infinite systems, with u.(A,) replaced by . where p.
is defined by (2.10).

2.3. The Bound on the Susceptibility

Now that we have Corollary 2.6, it is easy to get the bound on the
susceptibility in the infinite-volume limit. By the definition of block spin,

n—1

A D YR A ) R (2.18)
yeBi(x) k=0
Kolt) =2, L*"1,(1) (2.19)

(Because the summations in the definition of y, are absolutely convergent,
we can interchange the order of the summation.) Here, 1/2<z,<2
(uniform in n), because |{, — 1| < (ny + k) *2. So, if we combine the bound
on L*, given by the Corollary 2.4 of I, and also use the bound on n, [I,
Theorem 2.3(i)], we arrive at the bound (1.7) of Theorem 1.1.

2.4. The Bound on the Correlation Length

To treat the correlation length, we have to be more careful.
First, for {@o® ¢ 24, and for {@,¢ ), z+,, we have the following
spectral representations:

Proposition 2.7:

{Po@ D024 ‘ &
~IOTE R = L dpo(s, q) s exp | —iY q.x, (2.20)
<q)0(p0>0,24,u J 0 ;

Here dp, is a normalized measure whose support is in [0, 1] x [ —7, 7)*,

and sup,{support dp,} =e ™", m=¢~'. Moreover, for x; > 1,
<(P85Pn >n AN d
o= | dp,(s, q) s Tex (i r) 2.21
(oo oh >n,Z4,p f P %:q ( )

Here dp,, is a normalized measure, whose support is in [0, 1] x [ ~=, n)?,
and sup,{supportdp,} =e =", m,=L"¢"".

Proof of Theorem 1.2(ii}, Assuming Proposition 2.7. Comparing
(2.20) with the bound (2.6), we can immediately see that

exp(—m,,) <exp(—a/12) (2.22)
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because if m, was smaller than «/12, the spectral representation would yield
the two-point function decaying much more slowly than (2.6).

On the other hand, combining (2.21) with (2.9), we can get the upper
bound on m,;

m, < (2LAM)"? + In(S00L2M) (2.23)

The above two bounds, together with the relation between m, and m,,,
yield the desired bound (1.8) on &(z). |

Proof of Proposition 2.7. The spectral representation for
{Po® 0.2+, 18 a consequence of reflection positivity with respect to bond
planes and site planes (see, e.g., Ref. 6).

The representation for {(@o¢,>,z+, is derived by explicitly con-
structing (@@, ), 74, from {@o@, o z4,. That is, for x, > 1,

{PEPLDn 2
Ezn Z <qDy(pz>0,Z4,u

ve BY0),ze BMx}

=2,{P8)0,zx J dpo(s, q) s¥™ Y s

lul, o] < L72
4
X eXp (— iLry, qvxv>
2
4
X z expl:#iZ(uv-Uv) qv]
Juyl,lvy) < L2 2

=2,(03D0 74, | dpols, 9)

o [SE g2
X ST =7 2
RTINS
4
X exp <—iL" Y qvxv)
2

2

exp(—iL"q,/2) —exp(iL"q,/2)
eXp( - lqv/z) - exp(lqv/z)

4
x]1
2

Defining new variables
Sr = SL"

q,=L"q, (mod2mn)
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and dividing both sides by {(@{@7>, z4,, we can get the representation.

{Because # is finite and since we know that

O < <§98(P7>n,z4,u <

the supremum of the support of dp,, is e ™) |

2.5. Bound on the Renormalized Coupling

First note that g, is renormalization group-invariant. That is, for
any n,

8ren = ‘@/Xzfd: _I’—l4,n/(Xn)2(én)d
where
¢, =(m,) '=L"¢

Now taking n=n, +n,, and making use of the bounds on y,, u,,
(Proposition 2.3), and on ¢, [(2.22) and (2.23)], we obtain the result.

3. UPPER BOUNDS ON TWO-POINT FUNCTIONS

The upper bounds of Proposition 2.3 are provided by the following
proposition (of standard form), which is derived by the standard technique
of cluster expansion. (For a review of the cluster expansion technique see,
e.g., Ref 9.) Because our Hamiltonian #" is rather complicated, we will
describe our method in some detail.

Proposition 3.1. Under the assumption of Proposition 2.3, con-
sider

2(m)=[( T1 do. )expl ~ #,(@) + (@, H)] (1)
xe Ay
where
HE{Hx}xeA,,a ((DaH)E Z qoxHx
xe Ay (32)
H.eC, IH <L M- 1=p
and

FH)=1In[Z(H)/Z(0)] (3.3)

Then, F has a representation

FH)= ), fy(H) (34)

Yo A,
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Here Y runs over all the paved sets in 4,, and f,(H) depends only on H|,.
Moreover, as long as H, satisfies (3.2), f satisfies:

| fy(H) <exp[ —4 — @ 2(Y)] (3:5)

where £ (Y) is the length of the shortest tree on the centers of 4’s building
Y (see I or Ref. 10).

Proof of (2.6) and (2.7), Assuming Proposition 3.7. Since we are
considering a finite system ({¢ >,=0),

0
== FH .
{PoPx)n 3H, oM. (H) o (3.6)
By the representation (3.4) and the properties of f,
0o n= Y o= fy(H) 37)
S SO OH T '
Y=30,x

Now we estimate the derivative by the Cauchy formula:

0
t@HoaH /v(H)

H=0

dz dz’ 1 1
H. =27
jl zl = hznlJ; - hzanZlefY( =z, x 2)1

<h™?  max 1fy|<L8N°“exva4—%$(Y)]

|Hol = |Hx| =h

Substituting this into (3.7) and estimating the sum [use (# of Y30, s.t.
L(Y)= L") <2(84%) and F(Y)>{Y| —dL"],"%" we obtain

(37) <AL 2 exp[ —4 — fha(|x] —dL™)]

This is nothing but (2.6).
The second inequality of (2.7) can be obtained by noting that

0 0
— — — 4Ny —1
Xn—§<(p0(px> L ‘Anl ZaHOaH ( Heo
4N 62
= - 0 -1
L) S A=)

and estimating the right-hand side as before. J
Proposition 3.1 itself is proven step by step in Sections 3.1-3.3.
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3.1. Decoupling Expansion

Recall I, Theorem 2.2(ii). The term exp(— #") was given by
exp(— ") =exp[ — D, (GI) ™' @)~ Vy(®)]
X Z Hg D(@) exp[ — VIXHP)] (3.8)

To generate a decoupling expansion, we proceed as we did in the iteration
of BST.\'%D

1. Localize the regions where || is large (cf. Ref. 10, p. 214). Define

15(P)= H Altng+mV12 p < il < (m0+ )1 2(pe+ 1)]
xX€ Ay (39)
R(p)= U {dcL~"4,]d(4, x)< (10/a) In{p, + 1)}

xe Ay
and insert 1 =3, x;(®) into the integral in the definition of Z(H).
2. Mayer-expand ¥, and V.,,in V, and V_,. As a result,

RIS W FELCEECR IS

Xi} {Ya} (Y} i

At
X exp[— E(CD,C+1,¢)+ZJ dz %, *

Y T P fdout|

i YeXx;

X H [exp(— sz, —-1] n [exp(— >4)’/¢) 1] Xﬁ(ds) do

where we have defined

= (G a C,=(G) ) —ad,, (3.10)

3. Now decouple the nonlocality due to the kernels .« (relating ¥
and @) and G~ ' (or C). Let {U,} be the partition of the volume L "4 into
unions of blocks 4= L™"4 connected with respect to X,, ¥,, Y;, and
nearest neighbor (4,, 4,) [4, = R(p)]. In general, for any matrix 4 on

L7"4 (or on A,), we define 4° as

AXy)
S A

X, yesame U,

xyo XEUIn yEUk’ (311)

(As)xyE{
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. where 0< s, = 5, < 1. Doing this for C and &/, we get

Z(H)EZ(H)/J d® exp[ —la(®, ®)]

= [1rx(H) (3.12a)

{Xy} ¥

Here {X,} is a partition of 4, (ie, UX,=4,, X,nX, = for y#y"),

and
pH=L Y Y Y [s@) [Hg (W]exp[@,ﬂ)m

p {Xi} {Ya} {Yp}

X cxp [— 2(@,.¢9) +%L{ de %, 4%

X

-3 3 Vgl dov]

x [ Lexp(—¥2,,) = 11T [exp(— P 14y,)— 1]
x B
X 15(P) dppy-1(P) (3.12b)

The summations are taken as in Ref. 10, (5.25).

4. We separate the contribution from X' =4, and turn (3.i2b) into a
system of disjoint polymers:

ZM)= 1 o, ¥ [15x®) (3.13)
where T

pr=ox| 11 o, (3.13)
4 X
and the summation runs over {X,}, X,nX, = for y#7y".

5. Now we can take the logarithms by a standard method (see, e.g.,
Refs. 9, 12, and 13). Define

lnpds Y:A
= X 1
fy— Z Z _'<an,> XIJX?_a 9X )a Y¢A (314)
m=1 (X1,X2,.. Xm)
U Xi=
a(XlsXZJ"-’Xm)EZH(Uj
G i

U :{1 for X,;nX;=
Y710  otherwise
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where G runs over all the connected graphs on (1, 2,..., m). Then we have

InZ(H)= Y J,(H) (3.15)

and
FH)= 3}, [y(H) (3.16)

with
fv(H) = 7y (H) — 7,(0) (3.16")

By the construction, f depends only on HJ,.
This is the desired decoupling expansion.

3.2. Estimation of Polymer Activities

First, let us estimate p, of (3.12b):

pl)= ¥ S [expl(@, H)l,]

(Yal=@.{d} {Yp}=.{4}

X exp [— 5’2-((15, C°, &)

A +%L de %, ,(°) —% L da WW]

X H [exp(— I72)@)— 1] H [exp(— I~/>4yﬂ) —1]
« B
X 1ol D) dpt,-1(P) (3.12c)
By the inductive assumptions,

lexp(— I724)_ 1< (no+’7)71/2

lexp(—V 2aa) = 1< (o +n) 17

Ag A
| de 9, (WY ——1| de (Y°)*| < (ng+ny) """ )2
R ] R U S RN R U S
Y e HA<E Y HA+ Y . |H]
xed xed xed

SMAL) ' 4L M1 Y 2

xed
Moreover, using (A.3), we obtain
(P, C°B )| <daM~73° Y @2 (3.18)
xed

822/47/1-2-8
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Substituting these into (3.12¢) and estimating the integral, we immediately
obtain

exp(—3/L) < p(H)<exp(3/L) (3.19)

Now let us turn to the estimation of p,, Y >4 [see (3.12b)]. We
allow complex values for sy,

S| <2r" explad(Uy, Uy)] (3.20)
with
r'=exp(12 + 4oLy < r (3.20%)

For these s, and for @ in the support of x;,
Y e 2¥(R(p), X)

So we can use all the inductive assumptions D,, E, of I and can use
bounds similar to (3.17). For example,

lexp(—P5y) = 1 < (ng+n)~ 7 exp[ ~2L(Y)]

We first estimate the contribution from the p =0 term. Since the coef-
ficient of Y ¢ is very small, we have

[ @)+ ) < (14 5L =%) 90 < exp(| 1)

Using the Cauchy estimate to bound the s-derivatives [recall (3.20)]

0, —r"Lexp[ —od(Uy, Up)] (3.21)

and evaluating the summation over Y,, Y, we finally obtain
|contribution from p =0 term to p |
<exp(—6— 2P (x)+4|X]) (3.22)

The contribution from the  # 0 term is bounded similarly. This time, using
the exponentially small factor exp[ —(ny+n)"° 3. p2] coming from y,, we
have

|contribution from p # 0 term to p, |

<exp[—(ng+n)"Jexp[ —6 — 0P (x)+ 4 |X]|] (3.22%)
Combining (3.22) and (3.22'), we obtain
1o < (5/4) exp[ -6 —30.Z(X) + 4 |X|] (3.23)
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If we use the estimate on p,, (3.19), we find

5/4yexp[ —6— 1 P (X)+5|X]]

1P xl <(
<(3/2) exp[ — 6 — $x#(X)] (3.24)

In deriving the second inequality, we used

LX)z (X] =) LY =X LY)2 for jX|>1 (3.25)

3.3. Taking the Logarithm
Now that we have proven the convergence of the expansion (3.13"), we
can take the logarithm by the standard formula (3.14). The result is
| 74l S4/L<Lexp(—4)
| Fyl <exp[ -5 —§a?(Y)]

Thus, f, of (3.16) obeys the bound (3.5).

4. LOWER BOUNDS ON TWO-POINT FUNCTIONS

In general, it seems quite difficult to derive good lower bounds on
correlations (especially on those with massive decay) simply from the
cluster expansion.” We here derive the desired lower bounds by comparing
the expectation {---), with the Gaussian one (- - )4:

Coda= | digp () (1)

where dug is a normalized Gaussian measure with mean zero, covariance
G.

Proposition 4.1. Under the assumption of Proposition 2.3,
@507, — (@0t >al <LV 2(ng + 1)~ 12 (4.2)
[ Proof of (2.7) and (2.9), assuming Proposition 4.1.]
® One can sometimes obtain both lower and upper bounds on {---) by performing a “cluster

expansion for In{---),” as was done in Ref. 14. But such bounds are not sufficiently sharp
for our purposes (especially for {@q@,>).
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By I, Proposition A.4, (A.7), we have a lower bound on the Gaussian
propagator:
A@9)?>6=(G)oo = p, '(1 =21/ / 11,.)
> (QL*M) " '(1 —2n/./ M) {4.3)

As ng >y > M?, (4.2) and (4.3) give

PRV Y0 = (LMY (1 = 21/ /M) — 5L+ 2(ng 4 )~ 12
>(3LM)! (4.4)

By the Griffiths I inequality,® {@f¢”>,>0, and thus
1= 0a0t>, = Uea) .= BLM) !

This proves (2.7).

To prove (2.9), we combine (4.2) and I, Proposition A.4, (A.8), for ¢
sufficiently small {ie, n sufficiently large that L¥(n,+n) 2 <
exp[ —(L*M)"*]}. 1

Proof of Proposition 4.7. Since this is a statement about an upper
bound on the difference of correlations, we expect that we can prove it by a
suitable cluster expansion technique.

We first express the difference (--->,— (- > in a more tractable
form.

Definition 4.2. Define (¢ *"), (0<1<1) as

(™) =exp[~HP, G, @) —1-V,]

x 3 [T (g5 exp(—1V _p) (4.5)
{xy i
and define
Z(H), = [ dd ("), e (4.6)

We use the subscript G to denote the corresponding Gaussian quantity:
Z(H)g = [ dd exp[ 4@, G~ @) + (H, ®)] (4.6)
As in Section 3, we also define (asterisk subscript denotes ¢ or G)

Z(H), EZ(H)*/J‘ dd exp[ —1a(®, B)] 4.7)
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By the definition, we have

{Po@:n— PPy D6

d -
=3 A [ln Z(H),_, —In Z(H),_,
+In Z(H),_,—1In Z(H)G]f (4.8)

To estimate these terms, we use the following two lemmas.

Lemmas 4.3. For H.eC, |H|<L *™~' we can write (asterisk
subscript stands for =0 or G)

mZH), = Y 7.H), (4.9)

Y= da,

Moreover,
| Fy(H)g —F(H), o Sexp[ — (ny+n)"6 — 4 — @ Z(Y)]  (4.10)

Lemma 4.4. For [H <L *™~!and |1| <(ny+n)"2+ 1, we have

InZH),= ¥ 7,(H), (4.11)
and
| J¥(H),| <exp[ —4—la?(Y)] (4.12)

Here f,(H), depends only on Hj,.

These lemmas are proven at the end of this section.
Now by Lemma 4.3 and by the Cauchy estimate in H, the third and
the fourth terms of (4.8) are bounded as

[In Z(H)g —In Z(H),_,]

'aH oH,

H=0
<y _5__5_] [F4(H) —T4(H), _o]
\y907x 6H06HXH=0 Y| G Y! t=0
<L8No+zexp[_(n0+n)1/2] Z exp[_4—%o($(Y)]

Y30,x

SL¥™* 2 exp[ —3 — (ny+n)"?] (4.13)
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On the other hand, expressing the first and second terms of (4.8) as

0
aHoaH [1nZ(H), 1—1HZ(H): 0]
1 d 0 0
) d-——_——_—
[ dtaHoaHxﬂonazojy(H)’ (4.14)

and using the Cauchy estimates both in H and t (and Lemma 4.4) to bound
H- and t-derivatives,

(4.14) < (ng +n) 12 L3N0+ 253 (4.15)

we obtain from (4.9), (4.13), and (4.15) the desired bound. |
Proof of Lemma 4.3. Recall, by the definition of Z(H),, that

Z(H),- = | d® yo(®) exp[ —X(P, G ', @) + (H, ®)]
while
Z(H)o = | dd exp[ —4(®, G ', @)+ (H, ®)]

We perform the cluster expansion for both of them. But now, we have to
take only two steps:

1. Localize the “large-®” regions by (@) of (3.9).
2. Decouple the nonlocality caused by G, using (G™'),, as in Sec-
tion 3.

We proceed in the same way as in Section 3 (in fact in a much easier way).
By the definition, the contribution from the p =0 term is common to Z,_,
and Zg, and the difference lies only in p#0 terms in Z5. We thus have
(asterisk subscript denotes 0 or G)

200, =| T ()] T 1160,
d< A, {xy} oy
where
(ps)o=(ps)s (contribution from p=0)
[{(p=01inpy)ol =1(F=01inpy)| <exp[ —4—30L(x)]
[(p#01in py)gl <exp[—(ng+n)"* —ja?(x) +4 |X]]
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Thus,
[(Ax)o~ (Px)al Sexp[—(mg+n)"* —jaP(x)+4|X]]
Now taking the logarithm by (3.14), we get the desired lemma. §

Proof of Lemma 4.4. This is almost same as that of Proposition 3.1.
The only difference lies in the fact that we have introduced || <
(ny+n)"? + 1, which is multiplied to ¥,,, V., etc. But now, since we are
using (no+n)Y"? to distinguish between large and small fields, we can
refine bounds on ¥,,, etc. For example, since

Vool SO()(ng+n)"Pexp[-aZ(Y)]  on 34(Y)
we have now (by the minimum—maximum principle)
[V oarl SO )(ng+n)~ " exp[ — aL(Y)]

Also, tg"® appears only when there is a nonempty large-field region R # (¥,
and thus ¢ is multiplied by exp[ — (n, +#n)"?] and harmless.

In this way, the proof of Proposition 3.1 carries over to this case with
minor changes, and we obtain Lemma 44. |

5. BOUND ON TRUNCATED FOUR-POINT FUNCTION
The bound on #,, is obtained in the same spirit as that of Section 4.

Proposition 5.1. Under the assumption of Proposition 2.3,
it~ (i1g )] <§L16N0+4(”0+”)—1/2 (5.1)

where (i4, ) IS #, In the expectation (- ) [see (4.1)].

Proof of (2.8}, assuming Proposition 5.1. Obvious, because
(ﬁ4,n)Gauss = O l

Proof of Proposition 5.7. This can be proven in almost the same
way as Proposition 4.1 (estimating the difference between our theory and
the Gaussian one). We omit the details. |}

APPENDIX
We prove the following proposition.

Proposition A1. Let a=[(G%¥))~ ']y, and write

(G~ ]y =ad,, +aC,, (A1)
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Then for p, > (200-4-34)%,
a1 =398y Ca < (1 4+ 394 By 1) (A2)
and
[Coul S (37 u 7)1 {(A.3)

Proof. We omit the subscript (g,). We use Neumann series to get
G 71, that is, writing

ny = GOO((S.x'y + G—xy)
(Note that G,, =0 for x=y.)
(G =(Goo) 'L(L+G) '],
= (GOO)— : (5xy - (_;xy + Z G.XZG:_V - Z G.xzﬁzu(—;uy + )

Now we can use I, Proposition A4 to bound the summations. For
example,

< Z (200#~1/2)¢x—zum+IZ1~-zzIx,+ bz vl
n

21422500 Zmo (20 Zi 1)
<(200 4 3d ~I/2 L\—Vi%[:z (4 i 3 d) j}
<(200’4'3dﬂ;1/2)|x ,V|ao3 m

In the above we used

Z (4—1‘3'd)[z§09< i (4~i,3-—a’)1’(2i+1)d

z#0 =0

We thus have (for x#£ y)

(Ggl)x}’<(200,4,3dﬂ~j,f2)§x~-y(m i 3—m
(Goo) ™! " met

%(200 4- 3c1 —1/2)!x Yo

x =y can be treated similarly. §
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NOTE ADDED IN PROOF

Though not used in the paper, Proposition 4.1 can be improved as:

L.H.S. of (42) < O((ng+n)*) exp(— 5o |x|)
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