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A Rigorous Control of Logarithmic Corrections 
in Four-Dimensional (4)4 Spin Systems. 
II. Critical Behavior of Susceptibility and 
Correlation Length 
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Continuing the analysis started in Part I of this work, we investigate critical 
phenomena in weakly coupled (p4 spin systems in four dimensions. Concerning 
the critical behavior of the susceptibility and the correlation length (in the high- 
temperature phase), the existence of logarithmic corrections to their mean field 
type behavior is rigorously shown (i.e., we prove )~(t)~t l[lnt[~/3, ~(t)~ 
t - m  jln t[ x/6). 
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rigorous renormalization group. 

1. I N T R O D U C T I O N  A N D  M A I N  R E S U L T S  

In this paper ,  we cont inue  the p r o g r a m  s tar ted  in the Pa r t  I of this work  (1) 
(hereafter  referred to as I), and  ext rac t  the so-cal led l ogar i t hmic  

correc t ions  (2) to the mean  field pred ic t ions  in the cri t ical  behav ior  of the 
suscept ibi l i ty  and  cor re la t ion  length of  the weakly  coupled  (pc 4 system. 

The  Gibbs  m e a s u r e  of the ~04 spin system on a d-d imens iona l  hyper-  
cubic lat t ice Ao c Z d s tudied in this pape r  is defined as 

d # ( ~ )  = Z -1 e x p [ -  9f~  ~I  dcPx (1.1) 
x 
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100 Hara and TasaM 

where x e A o m Z  d, q0~R,  q~- {q)~}~, 

1 ~ (q9 _ q~e)2 + cp2 + ~ .  T 
Yf0A~ Ix-y4=1 

and Z is determined by the normalization condition j~ d/~(~)= 1. (By 
definition, #o here differs from that of Part I by 2oGoxx/2 = 2o(Go)oo/2. ) For 
any function F of oh, its thermal expectation value is defined by 

( F ) =  f F d#(cI)) (1.3) 

We take Ao as a d-dimensional torus of side L N. (We will mainly consider 
the system in four dimensions, i.e., d =  4.) 

As in I, we fix initial 2 o to a sufficiently small (but positive) value, and 
vary only/~o. We are interested in the behavior of (the infinite-volume limit 
of) the system, when #o approaches its critical value #~ [for the definition 
of #c, see (2.10)]. Our main physical result is the following: 

T h e o r e m  1.1. Consider the infinite-volume limit 
the four-dimensional (~0 4 system (1.1), and vary #o, 
( ~ n o  I ~ f io  ~ ~ 1). Then: 

(0) There exists a critical value #c(20). 

We write t - #0 - #,.. 

(i) For t > 0, the susceptibility )~ 

(A 0 ~ Z 4) of 
fixing 0 ~< 2o 

Z(t)-- Y. ( ~ o ~ )  
x e  Z 4 

the correlation length 

~(t) 1 _ _  lim ln(~~176176176176 
Xl ~ oo X 1 

(1.4) 

(1.5) 

and the renormalized coupling gren (here d =  4) 

gren(t)-- 

3 4 ~ -  

X2~ d 

Y. ((eo~Ox%~oz)-(~Oo~Ox)(%q~z) 
X , y , Z  ~ Z d 

(1.6) 

(1.6') 

exist. 



Logarithmic Corrections in 4D r Spin Systems. II 101 

(ii) Fo r  0 < t sufficiently small, they satisfy the bounds:  

R'l(L, No, no) 2t I Ilntl~/3<<,Z(t)<~R'~2t l llntp~/3 (1.7) 

R'l(L, No, no) i t  ~/2]lntll/6<<,~(t)<~R'it-l/211ntll/6 (1.8) 

0 ~< gren(t) ~< Cg(L, No)(n o + ]In t] )-1/2 (1.9) 

Here  L~>513, No~>8, n o ~ 2 o  ~ are the same as in I, 

R'~(L, N o, no)= C'(L, No)(no) c"(L'N~ (1.10) 

and Cg, C', and C" are finite, posit ive constants  depending only on L and 

No. 

Remarks. 1. The  theorem establishes the existence of the 
logarithmic corrections to the mean-field-like behavior  in our  weakly 
coupled ~o 4 model.  

2. Fo r  some general propert ies  of the critical point  (especially con- 
cerning its uniqueness),  see Ref. 3. 

3. For  the implicat ions of the logar i thmic corrections (for all 2 > 0) 
to the triviality p rob lem of q)44, see Ref. 4. 

4. The no ( ~ 2 o  1) dependence of the coefficient R'I is of  some interest. 
The fact that  it diverges when 2o--, 0 (no ~ ~ )  is quite reasonable  f rom 
physical considerat ions,  because in 2o = 0 ( = Gauss ian! ! )  theory, there are, 
of course, no logar i thmic corrections. 

5. The bound  on gren can be improved4: 

0 <~ gren(t) ~ Cg(L, No; 5)(no + [ln t r ) -  l + 6 
(1.11) 

0 < c ~ <  1 [Cx(L, No;5)--*oo as 5 - -*0]  

Note  that,  cont ra ry  to R'~, Cg(L, No; 6) does not  depend on no. 

By similar (but much  simpler)  analysis, we can prove: 

T h e o r e m  1.1 ' .  Consider  the same si tuat ion as in Theo rem 1.1, but 
now for the ~o 4 system in d dimensions  ( d >  4). Then we have: 

(0), (i) The same as Theorem 1.1 (replace Z 4 by Za). 

4 We can further improve(15): 

gren(t) ~ (n o + [ln tl)-I + O[(n ~ + Jln tf) 5/4] 

(both upper and lower bounds!). We are grateful to J. Chayes, L. Chayes, M. Aizenman, 
and A. Sokal for suggesting that improved bounds be obtained on gren" 
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(ii) For 0 < t sufficiently small, )~(t) and ~(t) satisfy the bounds: 

cons t . t  - l~2 ( t )~<cons t  ' . t  ~ (1.12) 

cons t . t  ~/2~<~(t)~<const'.t 1/2 (1.13) 

We will prove Theorem 1.1 in Sections 2-4, following faithfully the 
original idea of Wilson, ~5! but with complete mathematical rigor. First, in 
Section 2, we prove the theorem, making use of some bounds on the expec- 
tations (...).~r which are defined in terms of the nth effective 
Hamiltonian fff~ [the choice of n is defined in (2.2)]. Then, in Sections 
3-5, we prove these bounds on ( ' . - ) : r  

As for the continuum limit, we have the following result. 

P r o p o s i t i o n  1.2. The continuum limit of the theory 

J 
•~ 4 Z (q)x-  q~ 2 

Lx v[ = 1 

+ 4 (J >Ol (1.14t 

under the conditions 

#o ~> #,(2o, z) and 0 ~< ) ' 0 J  ~-~< (fie) ~ (1.15) 

is always Gaussian or badly normalized (i.e., all the correlation functions 
diverge, or all the correlation functions are zero!) theory. 

Remark. The above proposition tells us that under the condition 
(1.15) the continuum limit is Gaussian (or meaningless), no matter what 
wave function renormalization we choose. 

This proposition is proved by the bound on the renormalized coupling 
(Theorem 1.1) and/or by direct analysis of correlation functions. Details will 
be presented elsewhere (after the completion of the analysis of the low-tem- 
perature phase). 

2. DERIVATION OF THE L O G A R I T H M I C  CORRECTIONS 

Before describing the detailed proofs, let us fix some notations. Note 
that we have to consider both the infinite-volume limit Ao ~ Z J and the 
limit /~o ~ g~ + 0. Therefore, the definition of /~c needs somewhat careful 
treatment. In the following, we will fix the initial value ,~o and denote it 
as 2. 
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Def in i t ions  2.1 (cf. I, Corol lary  2.4). Let the original lattice Ao be 
a four-dimensional  torus of side L N, with N sufficiently large. Define 
#c(Ao)=#c(A;Ao)=critical value on Ao as in I, Theorem 2.1. (Of course, 
we need to take into account  the difference between definitions of go in 
Par t  I and in Par t  II.) Now denote  t -=/~- /~ . (A0)  > 0, and let 

M(L, No) = c~-2L8N~ exp(55 + 8~L N~ (2.1) 

Define n2>~0 as the smallest integer such that ~l+~2~>M. (For  the 
definition of n~, see I, Theorem 2.2.) In the following, we denote 

n ~ n 1 + n 2 (2.2) 

and also abbreviate ~ = ~c~,) etc, 

Remark. Note  that the above M is still much smaller than our  h0, 

r~ ~ ~ exp(~LUo + 1) (2.3) 

We will treat several kinds of expectations, listed in the following. 

Defini t ions 2.2. 

{ ' ' '  )O,A4, =- ~ d~ {exp[  - - . g f~  } ( . . ' )  
d ~  exp[  - dr176 (2.4) 

with dt~~ = d(~~ 0 of (1.2), with/~o =/~ and Ao=A. 
( ' ' ' ) ,~ .A~ is the expectat ion obtained by applying n BSTs to 

{ '")o,A,~,  i.e., for a function F of qs',, 

=- (F(z,, C ~b))o,A,~-- ~dqS, ,exp[_H~(~0n)  ] 
(g(q5)) , ,A,~  -~"~ ~" ~ d ~ " { e x p [ - d g " ( ~ " ) ] } ( ' - ' )  (2.4') 

We consider the torus A (considered as a set of sites and bonds)  as a union 
of a hypercube and its boundary (a set of bonds that make the hypercube 
into a torus) c~A. As for the infinite-volume limit of (-. '), , ,A,~, 

( ' ' ' ) 0 , Z % - -  lim ( ' " ) 1  / 
A J ~  Z 4 0 ,A ,# 

d~b {exp[ - dL~O!f~ee'(qS)] } ( ' ' ' )  (2.5) 
K . . . ) /  ~ _ 

O,A ,~ ~ d ~  e x p [ -  S~ 

and 

<F(qS") >n, z4,~ - <F(zfi/2d"q~)>o,z~ (2.5') 

where ~0 ~~ is a Hamil tonian with free boundary  condition, obtained ~ A f  

from dg ~ (on A) by omitt ing the term ~1 . . . .  j= 1 <P.~ (Py, where ( x y )  is con- 
tained in 0A. 
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2.1. Bounds on F i n i t e - V o l u m e  Expectat ions 

For the expectations <..-)~.A,~ defined by the above H ~  [with n of 
Eq. (2.2)], we can prove the following bounds (uniform in tAo] ). 

Proposition 2.:3. F o r 0 < t < ( n o )  -2, 

O~/,,ao,~,(Ao) +~ <~ const(L, No) exp( -~2c~ Ix[) (2.6) 

(3L2M) I~<Xn~<L 4N~ (2.7) 

where 

and 

where 

Z . -  ~ <~O~O~.)n.Ao,.,(Ao)+, (2.7') 
Xn ~ A,I  

0 ~ -- '~ <~ 11- 16N~ "4,~ "-~ g~ +4(no+n) l/ '2 (2.8) 

2.2. Bounds on I n f i n i t e - V o l u m e  Expectat ions 

Note that, for the following two reasons, the two expectations 
< "  )n,Ao,~c(A0)+, and < ' "  )~,z%~+, may be different: (i) <... ),,A0,u,+, and 
its infinite-volume limit < '") , ,z%~+~ generally do not coincide. (ii) #,.(A o) 
may be different from #~ (see below). 

Concerning the A o ~ Z 4 limit of/,c(Ao), we have (I, Theorem 2.5) 

lim #c(Ao) =/4. (2.10) 
AO ~ Z 4 

That is, the existence domain of #c(Ao) shrinks to a unique point of R as 
Ao ---* Z 4" 

For the A o ~ Z 4 limit of <.-. )n,ao,~, +,, we have the following lemma. 

t~4,n - ~, < q~;; (pi,'.; (p~r qo~ ) (2.8') 
x ,  y , z  ~ A n 

Also abbreviating 1 -- (1, 0, 0, 0), 2 - (2, 0, 0, 0), we have 

(500L2M) i e x p [ - ( 2 L 2 M )  1/2] <<. (~~176176 ~ U - ~  (2.9) 
0tPl  / n , A o , P c ( A o ) +  t 

holds for Iln t[ ~> const(L, No, M), sufficiently large. 

This proposition is proven in Sections 3 5. 
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L e m m a  2.4. For  fixed t > 0 ,  n, and for fixed x, there exists N(t) 
such that for ]AI = L  4N, N ) N ,  

( (/90 (/gx >0,A,.u, + t  ~< const(t) �9 e m(t)lxl (2.11 ) 

with m(t) > 0, const(t) < oo. Moreover, for fixed t > 0 and x ~ Z 4, 

lim <%(Px>0,A,~c+,= <(JO0(~x)0, Z4,/2cl-t (2.12a) 
A ~ Z  4 

lim ((190(49x>n,A,p, +t = ((pO(~gx>n, Z4,Uc+t (2.12b) 
A ~ Z  4 

,~ Because /q . (A)~ #, as A ~ Z 4, we can take ?~(t) sufficiently 
large so that for N>~N, pc(A)+�89 Then, by 
Proposition 2.3, 

< ~og qg~ >=,A,~,.+, ~< const �9 e -(~/12)lxl 

with n ~ tln tl. This in turn implies 

< ( P 0  q0x >0,A,,% + t ~'~ const '- e--(c~/12)L-n]x[ (2.13) 

Now the difference between (q)O(Px>=,A,~,.+, and (~~ , +, is 

I < % %  >.,.~.~, + , -  <q'o% >G<., +,1 

= dc~ (~Oo q)x > ~,,A,s,. + 

= d~ 2 (Cpo(p~ ; (~y(t)z)~n,A,#c+l (2.14a) 
I .v -  zl = l,<y,z>r 

Here ( . . .>~  is the expectation defined by the Hamiltonian ~gfo,~ where 
H ~ is defined by adding 

9( 

2 ~ ~PY% 
ly--z[ = 1,<y,z> ~3A 

to ~f~o,f. By the Lebowitz (7) and Griffiths II (s) inequalities, 

o~< Z <%%;  ~oy<>~,A,.c+, 
lY zI=I,<Y,Z>~OA 

090%>=<%%>= 

~<2Z <%%>=<%%>~ 

~< c o n s t ' ( t ) e x p [ - l m ( t ) m i n { d i s t ( x ,  c~A), dist(y, c3A)}] (2.14b) 
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On the other hand, the difference between (q~0~0x)~iA/,~,+~ and 
(q~o q)~)o, z4,, +, goes to zero, because the former converges to the latter by 
the monotonicity, This, together with the estimate (2.14b), leads us to the 
conclusion (2.12a). Equation (2.12b) immediately follows from the 
definition of ( ' ) n .  | 

Combining (2.10) and (2.12), we can finally obtain: 

P r o p o s i t i o n  2.5. Fix t > 0. Then, for fixed x ~ Z 4 ([xl < or) 

lim ~(pO(4)x~O,A,#~(A)+t = ~90(~0~c~0, Z4#c+ t (2.15a) 
A ~ Z  4 

and for fixed m < ~ ,  

lim ((#JOn(D~>m,A,ktc(A)+t = ( (~0 0n(~0m > re, z4/~, + t (2.15b) 
A ~ Z  4 

Proof of Proposition 2.5. As was noted at the beginning of this sec- 
tion, the expectation (..-),,,A may differ from (-..),, ,z4 for two reasons. 
We express them as 

I ((])O~Ox /~0.A,/l,(A)+ t - -  ((~00 (~0x)0, Z4,ktl-l-ti 

-}- [ ((PO(~0~c)0,A#t, + t - -  ( (P0fP x')0, Z4,/.t, + t] (2.16) 

We use the Lebowitz inequality (v) to bound the first term: 

I (q~o~0x)0,A,,,~A/+ ,-- (~0o~)o,z%, + ,I 

~. . d ~  (~Oo~%.)o.~,(~,~O~)o~, L 
v 

Now for sufficiently large A, /J,.(A)+�89 and by 
Proposition 2.3, 

2 ((tgO~Oy)O,A,lt((~O.~OY)O,A,# ~ const'(t) 
Y 

Thus, the first term of (2.16) is bounded by 

I#c - uc(A)I " const"(t) (2.17) 

and can be made arbitrarily small (for fixed t, x) by taking A sufficiently 
large. 
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As for the second term of (2.16), we can directly use Lemma 2.4, and 
conclude that this can also be made arbitrarily small by taking A large. | 

Corollary 2.6. Bounds on finite-volume expectations (2.6)-(2.9) 
hold also for those on infinite systems, with #c(A0) replaced by kt c where #c 
is defined by (2.10). 

2.3.  T h e  B o u n d  on t h e  S u s c e p t i b i l i t y  

Now that we have Corollary 2.6, it is easy to get the bound on the 
susceptibility in the infinite-volume limit. By the definition of block spin, 

n 1 
~o,~.=z U2L 3. ~ (py, z . -  1~ ~k (2.18) 

y e Bn(.~) k 0 

7.o(t) = z,,LZ')~,(t) (2.19) 

(Because the summations in the definition of Z,, are absolutely convergent, 
we can interchange the order of the summation.) Here, 1 /2~<z ,~2  
(uniform in n), because [-~k - 1[ ~< (n o + k) 3/2 So, if we combine the bound 
on L 2", given by the Corollary 2.4 of I, and also use the bound on n~ [I, 
Theorem 2.3(i)], we arrive at the bound (1.7) of Theorem 1.1. 

2.4. T h e  B o u n d  on  the Correlation L e n g t h  

To treat the correlation length, we have to be more careful. 
First, for (~po~Ox)0,z4, and for (q)0~0~),,z%, we have the following 

spectral representations: 

Proposition 2.7: 

( CpoCPx )0, Z4, 
= ~ J dpo(s, q) s I~1 exp - i ~ qvxv (2.20) 

(q)O ~ 0  50, Z44 ' 2 

Here dpo is a normalized measure whose support is in [0, 1] x [ - n ,  n) 3, 
and sups{support dpo } = e - " ,  m _= ~. -1. Moreover, for x 1 ~> 1, 

O ~IJx ) n ,  Z4,[R 
(~og~p'~),,z%- dp ' ( s 'q )s~ '  ~exp i q,x,. (2.21) 

2 

Here dp,, is a normalized measure, whose support is in [0, 1] x I - -n ,  n) 3, 
a n d s u p , { s u p p o r t d p , } = e  m,,m _ L,~ i 

Proof  of  Theorem 1.2(ii), A s s u m i n g  Proposition 2.7. Comparing 
(2.20) with the bound (2.6), we can immediately see that 

e x p ( - m , )  ~< exp( - ~/12) (2.22) 
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because if mn was smaller than ~/12, the spectral representation would yield 
the two-point function decaying much more slowly than (2.6). 

On the other hand, combining (2.21) with (2.9), we can get the upper 
bound on ran: 

mn <~ (2L2M) 1/2 + ln(500L2M) (2.23) 

The above two bounds, together with the relation between mo and mn, 
yield the desired bound (1.8) on r II 

Proof of Proposition 2.7. The spectral representation for 
(~oo~ox)o, z4~ is a consequence of reflection positivity with respect to bond 
planes and site planes (see, e.g., Ref. 6). 

The representation for (~0o~Ox)n, z4~ is derived by explicitly con- 
structing ((~O(~c)n, Z4,// from (q~I0f~X)0, Z4//. That is, for xl ~> 1, 

~Zr l  E ( (~OY (~2 50,Z4,/'t 
y ~ Bn(O),z  e B n ( x )  

=zn(q)g)o,z% f dpo(s ,q)s  c"x~ ~ s 
[ul,lv[ < Ln/2  ( 4 )  

xexp - i L n ~ q ~ x ~  
2 

x ~ exp - i ~ ( u v - v ~ ) q v  
lu,~l,lv.~l < Ln/2  2 

= z"(q)~176 Y dp~ q) 

X S Ln x l  . . . . .  
k S 1 / 2  - -  S - - 1 / 2  ] ( 4 )  

xexp -- iL n~q~xv  
2 

exp( - iL'qv/2) - exp(iL~qu/2) 2 
• 11 2 exp( - iq~/2) - exp(iq~/2) 

Defining new variables 

S r --__ S Ln 

f __ n q~ = L qv (mod 2n) 
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and dividing both sides by ((p~)q~>n, Z4,/.t, we  can get the representation. 
(Because n is finite and since we know that 

/7 n 0 <  <~Oo~O~ >.,z.~ < 

the supremum of the support of @/7 is e-mL) II 

2.5. Bound on the  Renormal ized  Coupl ing  

First note that gren is renormalization group-invariant. That is, for 
any n, 

gren = --ffl4/Z2 ~ d= --~4,n/(Zn)2( ~n) d 

where 

~n=(m,,) I - L  ,,~ 

Now taking n~-nl +n2, and making use of the bounds on Zn, z~4,n 
(Proposition 2.3), and on Cn [(2.22) and (2.23)], we obtain the result. 

3. UPPER BOUNDS ON TWO-POINT FUNCTIONS 

The upper bounds of Proposition 2.3 are provided by the following 
proposition (of standard form), which is derived by the standard technique 
of cluster expansion. (For a review of the cluster expansion technique see, 
e.g., Ref. 9.) Because our Hamiltonian ~/7 is rather complicated, we will 
describe our method in some detail. 

Propos i t i on  3.1. Under the assumption of Proposition 2.3, con- 
sider 

where 

and 

Z(H)--f(xHA dq)~)exp[--~(qZ)+(cI),H)] 

(., n)= E 
xeAn 

HxeC, tHx[<<.L-4U~ 

F(H) = ln[Z(H)/Z(O)] 
Then, F has a representation 

F(H) = Y, f r ( H )  
Y~An 

(3.]) 

(3.2) 

(3.3) 

(3.4) 
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Here Y runs over all the paved sets in A,, a n d f r ( H )  depends only on  H Iy- 
Moreover, as long as H x satisfies (3.2), f v  satisfies: 

I fy(H)b ~< exp[ - 4 - l c ~ (  Y)] (3.5) 

where s is the length of the shortest tree on the centers of A's building 
Y (see I or Ref. 10). 

Proof of  (2.6) and (2.7), Assuming  Proposition 3.1. Since we are 
considering a finite system (<(o >~ = 0), 

a c9 F(H) (3.6) 
(~~176 q~ >" - 8Ho c~H~ n =o 

By the representation (3.4) and the properties o f f >  

c? H H <q%q~ Z O H o - ~ x f r (  ) 
Y ~ A n  - = 0  
Y~O,x 

Now we estimate the derivative by the Cauchy formula: 

t ~ 0 H 
O H o ~ f r (  ) H-o 

; dzf d S l  X = 2 ' )  
= t : l=e~i  r < = e 2 ~ i Z 2 Z  ' 2 f Y ( H ~  

~<h -2 max IfYl~<LSU~ - -4 - -gSf (Y)  
I H o l  = I H ~ I  = h 

(3.7) 

Substituting this into (3.7) and estimating the sum [use ( #  of Y~0, s.t. 
~ (  Y) = LN~ <~ 2(Sd2y and 5r >1 I YI - dLN~ (l~ we obtain 

(3.7) ~< 4L 8u~ exp[ - 4  - ~ ( I x l  - dLN~ 

This is nothing but (2.6). 
The second inequality of (2.7) can be obtained by noting that 

0 0 
Z,=~<q%q~x> = L  4NotA.I-I~SHo~_H~xF(H ) n : o  

x x , y  . 

1 92 'H=0 = L-4~r176 IA,! ~-~TF({Hx=H})  

and estimating the right-hand side as before. | 

Proposition 3.1 itself is proven step by step in Sections 3.1-3.3. 
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3.1.  D e e o u p l i n g  E x p a n s i o n  

Recall I, Theorem 2.2(ii). The term e x p ( - ~  ") was given by 

e x p ( - ~ ' )  = exp[ - l (~b ,  (G~')) - '  ~ ) -  V2(4~)] 

x ~, I~ g}D(qS) exp[ - VLxb}(~P)] (3.8) 
{x~} i 

To generate a decoupling expansion, we proceed as we did in the iteration 
of BST. (l~ 

1. Localize the regions where top] is large (cf. Ref. 10, p. 214). Define 

Z] ~(~j~)) ~-- H I~[(nO+n)l/12p.x~l~Pxl ~(no+a)l/12(px+ 1)] 
x ~ A n  

Eft )  = ~) { A ~ L  "A, Id(A,x)<(lO/cOln(L + l) } 
x E A n  

and insert 1 = ~p  Zp(r into the integral in the definition of Z(H).  

2. Mayer-expand VzY and ~'~>4y in V 2 and V~D. As a result, 

(3.9) 

Z ( H ) = 2  2 2 2 f l~g~c,R(gt )exp[(~ ,H)lx]  
6 {X,} { g~} [ Y/I} " i 

a ) ~ ,  
x exp ~(~, C+l , , p )+~ j  d~, ~,~, 

- )~ r ] 
] 

i Y c  X i 

x [ I  [exp( - V2y~) - 1 ] H [ e x p ( -  V>>-4Y[I) - 1 ] Zr deb 

where we have defined 

a~(G~Z"l)oo ~, a'C~y=-(G(z')i-~--a'6~y (3.10) - -11  i x y  

3. Now decouple the nonlocality due to the kernels d (relating 
and ~b) and G ~ (or C). Let {Uk} be the partition of the volume L - ' A  into 
unions of blocks A ~ L - n A  connected with respect to Xi, Y~, Y~, and 
nearest neighbor (Ax, A2) [ A ~ R ( p ) ] .  In general, for any matrix A oi1 
L-hA (or on A,,), we define A" as 

fAxy, x, y e  same U, 
(AS)xv- = (3.11) 

Lsk~,Axy, x e  Uk, y e  Uk, 
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where 0 ~< Skk, = Sk'k ~< 1. Doing this for C and ~r we get 

Z ( H ) - Z ( H ) / f  dq5 e x p [ - � 8 9  cb)] 

= E FI p~,(n) 
{x~} 

Here 
and 

(3.12a) 

{X~} is a partition of A, (i.e., UXv=An, X~,c~X>,,=~ for 7 r  

r {x~} { r~} {rtd " 

[ a x 2 fxd~cf~t )~  x exp -.~(q),cs, o) +-~ 

] 
i Y ~ X i  �9 \ R  

x H [ e x p ( -  P2r~)-  1] l~ [ e x p ( -  ~'~>4r~)- 1] 

• z~(e) dm-,(~)  

The summations are taken as in Ref. 10, (5.25). 

(3.12b) 

We separate the contribution from X =  A, and turn (3.12b) into a . 

system of disjoint polymers: 

Z ( H ) =  H p~ ~ H tSx~(H) (3.13) 
,a=A, {xr} v 

where 

~ x - p x / H  f,~ (3.13') 
z l c 3 2  

and the summation runs over {X~}, X 7 n X~,, = ~ for y C y'. 

5. Now we can take the logarithms by a standard method (see, e.g., 
Refs. 9, 12, and 13). Define 

In P4, Y=A 

m =  1 ( X I , X 2 , . . . X m )  " 

U X i =  Y 

a(xl, x2,..., Xm) -- E 1-I (U~-- 1) 
a ij 

{1 ~ 
U~ =- otherwise 
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where G runs over all the connected graphs on (1, 2 ..... m). Then we have 

and 

with 

In Z ( H ) =  ~ f r (H )  (3.15) 
Y~An 

F(H)= ~ f r (H)  (3.16) 
Y ~  An 

f r (H )  - 7r(H) - jTr(0) 

By the construction, fy  depends only on HI r- 
This is the desired decoupling expansion. 

(3.16') 

3 . 2 .  

p~(H) - 

E s t i m a t i o n  o f  P o l y m e r  A c t i v i t i e s  

First, let us estimate p~ of (3.12b): 

F~ f exp[(~. H)I~] 

__ a . . . .  (t/,,o 4 x exp[  ~ ( ~ , C ~  5) +: f  dz.C~..(O~ ~)] 

x 1-] Eexp(- ff'2Y~)- 1] 1-[ [exp(-  P>~4Yr~)- 1] 

x Zo(qS) d~G-ffq ~) (3.12c) 

By the inductive assumptions, 

lexp(- V2~)- 11 <~(no+n) 1/2 
lexp(- ~'~4~)- 11 <~(no+n) 1/3 

j d~%~(Ooy-Z., d~ 0~) -<(~o+.~)-" ~ (~o~) ~ 
x ~  (3.17) 

~, ~Oxgx <~1 ~ IHxl + ~ ~Ox rgxX 
x c J  .,c~A 

~(4L) l+L-4N~ 2 O2~ 
x ~  

Moreover, using (A.3), we obtain 

1�89 C~162 <~�89 1/239 2 (o~ (3.18) 
x ~ d  

822,"47/I 2-8 
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Substituting these into (3.12c) and estimating the integral, we immediately 
obtain 

exp( - 3/ L ) ~ p ~( H) <<. exp(3/L) (3.19) 

Now let us turn to the estimation of py, Y > A  [see (3.12b)]. We 
allow complex values for Skk, 

Iskk'l ~< 2r" exp[c~d(Uk, U~,)] (3.20) 

with 
r" = exp(12 + 4c~L N~ <<. r (3.20') 

For these Skk,, and for ~ in the support of Zp, 

O" s ~ , , ) ( R ( p ) ,  x )  

So we can use all the inductive assumptions D,,, En of I and can use 
bounds similar to (3.17). For example, 

[ e x p ( - P a r ) - l l ~ < ( n o + n )  1 / 2 e x p [ _ : ~ y ( y ) ]  

We first estimate the contribution from the/5 = 0 term. Since the coef- 
ficient of Y ~0 z is very small, we have 

f d~,,,(r - �9 ) ~< (1 + 
�89 <~ exp(]~l ) 

Using the Cauchy estimate to bound the s-derivatives Erecall (3.20)] 

0 S ~ r"-1 exp[-c td(U~,  Uk,)] (3.21) 

and evaluating the summation over Y~, Y,, we finally obtain 

Icontribution from/5 = 0 term to p.~] 

~< e x p ( - 6  - 4eS~(x) + 4 IXb) (3.22) 

The contribution from the/~ # 0 term is bounded similarly. This time, using 
the exponentially small factor e x p [ - ( n  o + n)~/6Z p2] coming from Zr we 
have 

Lcontribution from/5 r 0 term to Px] 

<~exp[-(no+n)  1/6] e x p [ - 6 - � 8 9 1 6 2  4 IXI] (3.22') 

Combining (3.22) and (3.22'), we obtain 

IPxl <<. (5/4) e x p [ -  6 - �89 + 4 IXt ] (3.23) 
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If we use the est imate on p~, (3.19), we find 

IPxt ~< (5/4) exp [  - 6  - � 89  + 5 IXI ] 

(3/2) e x p [ -  6 - ~ e S f ( X ) ]  

In deriving the second inequality, we used 

LP(X)>~(tXt--1)LN~176 for [ X I > I  
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(3.24) 

(3.25) 

3.3. Taking the Logari thm 

N o w  that  we have proven  the convergence of the expansion (3.13'), we 
can take the logar i thm by the s tandard  formula  (3.14). The  result is 

17~1 ~< 4/L <~ �89 e x p ( - 4 )  

I f r l  ~< exp [ - 5 - �89 ] 

T h u s , , f r  of (3.16) obeys the bound  (3.5). 

4. LOWER B O U N D S  ON T W O - P O I N T  F U N C T I O N S  

In general, it seems quite difficult to derive good  lower bounds on 
correlat ions (especially on those with massive decay)  simply f rom the 
cluster expansion.  5 We here derive the desired lower bounds  by compar ing  
the expecta t ion ( . . . ) , ,  with the Gauss ian  one ( . . . ) ~ :  

( ) ~  d#o~o, (.-) (4.1) 

where d/x G is a normal ized Gauss ian  measure  with mean  zero, covariance 
G. 

Proposit ion 4.1. Under  the assumpt ion  of Propos i t ion  2.3, 

I (~0~o. ' , ;) , ,-  (~0~(p'~)ol ~< l~LSU~ + n) 1/2 

[ P r o o f  of (2.7) and (2.9), assuming Propos i t ion  4.1.] 

(4.2) 

5 One can sometimes obtain both lower and upper bounds on ( . . . )  by performing a "cluster 
expansion for ln( . ' - ) ,"  as was done in Ref. 14. But such bounds are not sufficiently sharp 
for our purposes (especially for (r 
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By I, Proposition A.4, (A.7), we have a lower bound on the Gaussian 
propagator: 

((~o~) 2 )G = (G)oo >~ #~-1( 1 -- 2rr/x/-#-~) 

>~ (2L2M) - '( 1 - 2rc/,~-M) (4.3) 

As no>/no>~M 2, (4.2) and (4.3) give 

((q~)2) ,  ~> (2L2M)-1(1 _ 2n/x/-~) _ 1LSNo + 2(n ~ + n)-1/2 

>/(3L2M)-I (4.4) 

n n By the Griffiths I inequality, (8) (q)oq~x)n ~-0, and thus 

x 

This proves (2.7). 
To prove (2.9), we combine (4.2) and I, Proposition A.4, (A.8), for t 

sufficiently small {i.e., n sufficiently large that L8X~ 
exp[-(L2M)l/:]}. | 

Proof of Proposition 4.1. Since this is a statement about an upper 
bound on the difference of correlations, we expect that we can prove it by a 
suitable cluster expansion technique. 

We first express the difference ( ' ' ' ) n - - ( ' ' ' ) G  in a more tractable 
form. 

D e f i n i t i o n  4.2.  Define (e Jr~ (O~<t<~l) as 

(e--W")t=-exp[-�89162 ' ,G l , ~ ) _ t .  V2] 

x ~ H (tg~x~)exp(--tV-D) (4.5) 
{x~} i 

and define 

Z(H),=-fdq~ (e w")t e(H'*) (4.6) 

We use the subscript G to denote the corresponding Gaussian quantity: 

Z(H)G -- f dqb exp[ --�89 G-1@) + (H, O)] (4.6') 

As in Section 3, we also define (asterisk subscript denotes t or G) 

Z ( H ) ,  - Z(H) , / f  &b exp[ - �89 ~) ]  (4.7) 
I 
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By the definition, we have 

(~OOq~x) n - (~Oo q~ ) G 

[in 2 ( I ~ ) , = ,  - in 2(H),= o 
- O H o  ~H~ 

+ In 2(H) ,=  o - I n  2(H)G]  (4.8) 
H = 0  

To estimate these terms, we use the following two lemmas. 

L o m m a s  4.3. For H ~ C ,  ]H~] ~<L -4~v0-~, we can write (asterisk 
subscript stands for t = 0 or G) 

In Z(H),= ~ jTv(H), (4.9) 
Y ~ A n  

Moreover, 

])7r(H)G-fY(H),= ol <~exp[-(no+n)l/6-4-~o~5~(Y)] (4.10) 

k e m m a  4.4. For IHxl ~<L -4N~ and Itl ~< (no+n)1~2+ 1, we have 

lnZ(H),= ~ 7y(H), (4.11) 
Y ~ A n  

and 

I Yy(H),I ~ exp[ - 4  - ~:~L~( Y)] (4.12) 

Here fv(H)t  depends only on H[y.  

These lemmas are proven at the end of this section. 
Now by Lemma 4.3 and by the Cauchy estimate in H, the third and 

the fourth terms of (4.8) are bounded as 

0 ; 0  80Hx [ln 2(H)G--  In 2(H) t=o]  H =o 

0 8_8Hx H_ ~< Z aH~ [aTr(H)o-Tr(H) ,=o]  
Y~O,x --0 

4 LSN~ 2 exp[--(no + n)l/~] ~ exp[--g--~c~5~(y)] 
Y~O,x 

~<L 8N~ exp[ - 3  - (no -1- rt) 1/2 ] (4.13) 
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On the other hand, expressing the first and second terms of (4.8) as 

3 

011o r 
- -  [In 2 ( H ) , =  ~ - I n  2 ( H ) , = o ]  

= dt-~ E f~(H) ,  (4.14) 
= 0  Y ~  0,~c 

and using the Cauchy estimates both in H and t (and Lemma 4.4) to bound 
H- and t-derivatives, 

(4.14) ~< (no + n) 1/2 LaNO+2e -3 {4.15) 

we obtain from (4.9), (4.13), and (4.15) the desired bound. I 

Proo[ o[ Lemmo 4.3. Recall, by the definition of Z(H), ,  that 

Z (H) '=~  = f d 4  Zo(4) exp[ - �89  G 1, 4 )  + {H, q~)] 

while 

Z ( U ) G = f d 4 e x p [ - l ( 4 ,  G 1, 4 )  + (H, O)3 

We perform the cluster expansion for both of them. But now, we have to 
take only two steps: 

1. Localize the "large-4" regions by Zr of (3.9). 
2. Decouple the nonlocality caused by G -1, using (G-I) , ,  as in Sec- 

tion 3. 

We proceed in the same way as in Section 3 (in fact in a much easier way). 
By the definition, the contribution from t h e / 5 = 0  term is common to Z,=o 
and ZG, and the difference lies only in/5 ~ 0 terms in ZG. We thus have 
(asterisk subscript denotes 0 or G) 

where 

(P~)o = (P~)G (contribution from p = 0) 

1(/5 = 0 in/~x)ol = 1(/5 = 0 in PX)GI ~< exp[ --4 -- �88  

I(P r 0 in tSx)GL ~< exp[--  (no + n)1/6 _ �88 + 4 IX] ] 
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Thus, 

t(/Sx)0 - (fix)o] ~< exp [ - (no + r/) 1/6 - 1 ~ o  (x)  "k- 4 p X[ ] 

Now taking the logarithm by (3.14), we get the desired lemma. | 

Proof of  Lemmo 4.4. This is almost same as that of Proposition 3.1. 
The only difference lies in the fact that we have introduced Itf~< 
(n  o -~-n)l/2"~ - 1, which is multiplied to V2r, P>4r, etc. But now, since we are 
using (no+n)  1/12 to distinguish between large and small fields, we can 
refine bounds on ~'2 r, etc. For example, since 

]P>~arl<.~O(1)(no+n)-l/2exp[-~5~(Y)] on 3W(Y) 

we have now (by the minimum-maximum principle) 

I ~'>4rl ~< O(1)(n0 + / 7 )  -7/6 e x p [ -  c ~ ( Y ) ]  

Also, tg~x R appears only when there is a nonempty large-field region R # ~ ,  
and thus t is multiplied by e x p [ - ( n  o +n) 1/2] and harmless. 

In this way, the proof of Proposition 3.1 carries over to this case with 
minor changes, and we obtain Lemma 4.4. II 

5. B O U N D  ON T R U N C A T E D  F O U R - P O I N T  F U N C T I O N  

The bound on z?4.n is obtained in the same spirit as that of Section 4. 

Proposition 5.1. Under the assumption of Proposition 2.3, 

]u4,,, - (t~4.r,)Gr ~ ~L16N~ + n) -1/2 (5.1) 

where (u4,,)~ is u4 in the expectation ( . . . ) ~  [see (4.1)]. 

Proof of (2.8), ossumin9 Proposition 5.1. Obvious, because 
(bl4,n)G .. . .  ~0 .  I 

Proof of  Proposition 5.1. This can be proven in almost the same 
way as Proposition 4.1 (estimating the difference between our theory and 
the Gaussian one). We omit the details. | 

A P P E N D I X  

We prove the following proposition. 

Proposi t ion  A.1. Let a = [(G(~n))-l]o0, and write 

[(G~..)) 1]~y = aax. v + aCxy (A.1) 
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and 

Then for # .  >/(200" 4 . 3 d )  2, 

#,,(1 - 3a + 8#21/2) ~ a ~< # . (1  + 3 J + 8#2 i,,'2) (A.2) 

i Cox [ ~< (3a+ 7#s 1/2)!x1~ (A.3) 

ProoL We omit the subscript (#n). We  use Neumann series to get 
G~-1, that is, writing 

Gxy = Goo(axy + Gxy) 

( N o t e  that Gxy = 0 for x = y.)  

(G- ')xy = (Goo)- ' [ ( l  + G) - ' ]~y  

= (Goo)-' (6xy-G:v,  + ~ GxzG=y- ~ G~zG~,G,,y + "" ) 
z z , la 

Now we can use I, Proposition A.4 to bound the summations. For 
example, 

~ , . ~  .... G ~  l G~,~2 G~2.3 " " G=.,y 

Z ( 2 0 0 # Z  1/2)I. ~c -- z , l~  + Izl--  z2[~. + ' "  + iZm - -  y l ~ .  

g l ,Z2 , , , , ,Z tn , (2; i~7  e Zi+l) 

[= ]m ~< (200" 4'  3d#2 I/~) )x- ,'Jr (4 -I"  3 -d))~l= 
z 0 

<~ (200" 4" 3d~t~- l/2) Ix- yl~ 3 "~ 

In the above we used 

Z ( 4 - ' .  3 -,,)1~t~ ~ ~. ( 4 - ' - 3 - d y ( 2 / +  t)  d 
zv~O l = 0  

We thus have (for x ~a y) 

~< (200" 4" 3a#2m) l~--'i~ 3 -'~ 
t ~ J 0 0 !  m = 1 

~< �89 (200.4.3~u2 ~/2)~- ,~  

x = y can be treated similarly. 1 
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NOTE ADDED IN PROOF 

Though not used in the paper, Proposition 4.1 can be improved as: 

L.H.S. of (4.2)<~O((no+n) ~ / 2 ) e x p ( - ~  txl) 

REFERENCES 
1. T. Hara, J. Stat. Phys. 47:57 (this issue, preceding paper). 
2. A. L Larkin and D. E. Kkmelnitskii, Zh. Eksp. Teor. Fiz. 29:1123 (1969); F. Wegner and 

E. Riedel, Phys. Rev. B 7:248 (1973); E. Brezin, J. !e Guillou, and J. Zinn-Justin, Phys. 
Rev. D 8:2418 (1973). 

3. M. Aizenman, Phys. Rev. Lett. 54:839 (1985); Absence of intermediate phase, in Statistical 
Physics and Dynamical Systems: Rigorous Results, D. Szesz and D. Retz, eds. (Birkh~iuser, 
Basel ). 

4. M. Aizenman and R. Graham, Nuel. Phys. B 225:261 (1983). 
5. K. G. Wilson and J. Kogut, Phys. Rep. 12:75 (1974). 
6. H. Tasaki, Master's Thesis (i984). 
7. J. Lebowitz, Commun. Math. Phys. 28:313 (1972); 35:87 (1974). 
8. R. Griffiths, J. Math. Phys. 8:478,484 (1967). 
9. D. Brydges, A Short Course on Cluster Expansions, Les Houches 1984. 

10. K. Gaw~dzki and A. Kupiainen, Commun. Math. Phys. 99:197 (1985). 
11. K. Gaw~dzki and A. Kupiainen, Ann. Phys. 147:198 (1983). 
12. K. GawCdzki and A. Kupiainen, Les Houches 1984. 
13. T. Balaban, D. Brydges, J. Imbrie, and A. Jaffe, Ann. Phys. 158:281 (1985). 
14. T, Kennedy and C. King, Commun. Math. Phys. 104:327 (1980). 
15. T, Hara, in preparation. 


